A Framework for Learning Rules from Multiple
Instance Data

Yann Chevaleyre and Jean-Daniel Zucker

LIP6-CNRS, University Paris VI,
4, place Jussieu,
F-75252 Paris Cedex 05, France
{Yann.Chevaleyre, Jean-Daniel.Zucker }@lip6.fr

Abstract. This paper proposes a generic extension to propositional rule learn-
ers to handle multiple-instance data. In a multiple-instance representation, each
learning example is represented by a\bag" of fixed-length \feature vectors". Such a
representation, lying somewhere between propositional and first-order representa-
tion, offers a tradeoff between the twda1vE-RIPPERMI iS one implementation of

this extension on the rule learning algoritfRreper. Several pitfalls encountered

by this naive extension during induction are explained. A new multiple-instance
search bias based on decision tree techniques is then used to avoid these pitfalls.
Experimental results show the benefits of this approach for solving proposition-
alized relational problems in terms of speed and accuracy.

1 Introduction

In most ML applications, the choice of knowledge representation for a learning example
is between a fixed-length "feature vector" and a first-order representation. The motiva-
tion for using first-order representation is that it is the natural extension to propositional
representation. However, a known drawback of using first-order logic is that its expres-
sivity is so high that in order to learn efficiently, strong biases suaetsrminacyare
often required on the hypothesis space. Giordatral. have recently shown that there
is a phase transition in relational learningl[10] linked to the exponential complexity of
matching. They argued that relational learners could hardly search in practice for target
concepts having more than four non-determinate variables. The difficulty of learning re-
lations has stimulated attempts towards extending Attribute/Value representation rather
than directly using first-order logic based representation. Multiple-instance representa-
tion, where each example is represented by a "bag" of fixed-length "feature vectors" [8],
is an extension that offers a good tradeoff between the expressivity of relational learning
and the low complexity of propositional learning. Data represented as bags of vectors
may either be found naturally in chemical domains [8], in images classification tasks
[12], or be produced after multiple-instance propositionalization of first-order/data [17,
1.

Much work has been done on multiple-instance learning. Unfortunately, available
learners are not able to efficiently generate easily interpretable rule sets or decision
trees. Also, the generated models cannot be reformulated into first-order theories; these

L. De Raedt and P. Flach (Eds.): ECML 2001, LNAI 2167, pp[49-60, 2001.
© Springer-Verlag Berlin Heidelberg 2001

50 Y. Chevaleyre and J.-D. Zucker

learners can therefor not be used to solve relational learning problems with multiple-
instance propositionalized data. Because propositionalization based relational learners
(such asStiLL [14]) often outperform classical relational learners, relational learning
based on multiple-instance propositionalization (which is much more adapted to non-
determinate domains than standard propositionalization [17]) is a promising field for
which efficient multiple-instance rule learners will be needed.

This paper proposes a framework for extending propositional rule learners to handle
multiple-instance data. A first extension is presented and implementated Rarthe
rule learning algorithm. The resulting algorithm, callddive-RipPERMI, is evaluated
and analysed on artificial datasets. Several pitfalls encountered by this naive extension
are then characterized before showing that a modification of the refinement procedure
implemented inRipPERMI avoid these pitfalls. Experiments on artificial datasets are
used to validate these improvements. The last section presents experiments on relational
data and shows the benefits of a multiple-instance learner for relational learning. As our
algorithms generate rule sets, it is possible to use them on relational learning problems
reformulated into multiple-instance learning tasks, to generate first-order NNeg:-
RipPERMI andR1PPERMI are compared against three popular relational learners on the
mutagenesis prediction problem.

2 The Multiple Instance Learning Problem

2.1 Definition and Notation

In the traditional setting of machine learning, an object is represented by a feature vector
x, towhich is associated a labg(z). Let X’ be a feature vector space, aithe finite set
of labels or classes. For the sake of simplicity, we will restrict ourselves to the two-class
case, i.e) = {®,6}. The goal then, typically, is to find a classifier X —) which
minimizes the probability thaf(z) # h(x) on a newly observed example, f(z)).

Within the multiple instance framework, objects are representdablyg of vectors
of variable size. Vectors are also calledtancesAs in the traditional setting, they can
contain numeric as well as symbolic features. The size of abhagioteds (b). Its
instances are noted . . . b,(;). The multiple instance induction task consists of finding
a classifier{ : 2% —), which accurately predicts the Iablé(b)@.

The multiple instance learning problem has been associated to a bias introduced by
[8], which will here be refered to as tlsngle-tuple biasas opposed to the multi-tuple
bias proposed by 13]. It can be formally defined as follows:

Definition 1 The single-tuple bias is a restriction on the set of functifhs
2% — {@, o} to those for which there exists a functibn: X — {®, ©} such that
H(b) = i, h(b;).

The underlying idea is that for certain learning tasks, if a bag is labeled positively,
then at least one of its instances must be responsible for this.

! Note that functions on the instance space (resp. bag space) will be noted lower case (resp. upper
case).

A Framework for Learning Rules from Multiple Instance Data 51

This idea can be particularly well illustrated in an example on which this bias has
been extensively used: the task of predicting whether molecules smell musky/or not [8].
Dietterich chooses to represent molecules as bags of vectors, each vector describing a
steric configuration of the molecule. It is well known by chemists that a molecule is
musky iff at least one of its configurations has given properties, which make the entire
molecule smell musky. Thus, there exists a functtorepresenting these properties,
such that the functioff (b) - which is derived front: as shown earlier - is an accurate
classification function for this learning task.

2.2 Related Work

Previous work on learning from multiple-instance examples has focused on the problem
of learning axis-parallel rectangles (APR) under the single-tuple bias. In particular, Di-
etterichet al. [8] have designed APR algorithms to solve the task of predicting whether
amolecule is musky or not. Other APR algorithms shbitiINsT [3] have been tested

on this learning task, and many interesting learnability results have been obfdined [5,
2. More recently, Maroret al. proposed a new multiple-instance algorithm calie

verse Density12], which they applied to image classification. Finally, the lazy learning
approach to multiple-instance learning has been investigated bst Alr16].

The algorithms mentioned here do not generate interpretable hypotheses such as rule
sets, which is our purpose. In the following, a method for inducing multiple-instance
rules with a modified traditional rule learner will be presented. Note that Blockeel and
De Raedt|[4] already presented a method for extending propositional learners to handle
relational data. The extension of a propositional learner to the multiple-instance case
is less complex, and yields specific multiple-instance issues, as will be shown in the
following.

3 Extending a Propositional Learner

3.1 Motivation

This section presents a method for the extension of a propositional learner to handle
multiple-instance data using the single-tuple bias. Our choice to adapt a propositional
learner instead of designing new multiple-instance algorithms is justified by the three
following points. First, the two learning problems are very similar. In fact, multiple-
instance data can easily be represented by a single set of vectors, and under the single-
tuple bias, the multiple-instance and the single-instance search spaces are identical. Thus,
the extension may be simple. Secondly, the existing multiple-instance leariérs|[8,3,12]
do not generate interpretable rules or decision trees. Note that an MI learner able to
generate rule sets can be used to solve relational learning problem with an appropriate
reformulation algorithm such asepart [L7]. This will be detailed in the final section.
Finally, propositional learning is a mature field, and many of the available algorithms
can efficiently handle large databases, while achieving low error rates. The extension of
such a learner to the multiple-instance case will thus benefit from this maturity.
Extending a decision tree induction algorithm to the multiple-instance case raises
several algorithmic problems, due to tigide-and-conqueaspect of the learner. These

52 Y. Chevaleyre and J.-D. Zucker

issues are beyond the scope of this paper and will be addressed elsewhere. Fortunately,
these problems are not encountered in the rule learning coverage algorithms. We have
therefore chosen to propose an extension of propositional rule learners using a coverage
algorithm.

3.2 A Single-Tuple Naive Extension oRIPPER

Let us now study the modifications needed by a single-instance (i.e. traditional) rule
learning algorithm in order to incorporate the single-tuple bias. Let us consider a generic
single-instance rule learner using a coverage algorithm. It can be seen as an algorithm
iteratively searching for a functioh under a given bias, such that this function will
minimize a given criterion related to the prediction errorhobn the training dataset

D. This criterion varies from one algorithm to anothRreprer [7] and C4.5 both use

a criterion based on the information gain. To compute the value of this criterion, the
learners first evaluat®unt(h, D, ®) andcount(h, D, ©), which denote the number of
positive (resp. negative) examples frdincovered byh.

In order to adapt a single-instance learner to the multiple instance case, we first need
to transcribe a multiple instance bag set into a simple set of vectors, without any loss
of information. This can be done by adding to each instance two attributes, the first
one namedagid identifying the bag it belongs to and the second one namedass
encoding the class of its bag.

After having done this, we must now modify the evaluation criterion, such that
H(b) = 3i, h(b;) is evaluated instead df. To do so, we will replace the function
count(h, D, ¢) by count singie—tupie (b, D, ¢) evaluating the number of bags of class
encoded inD covered byH . Note that because of the single-tuple biag; ifovers a
single vectorr, then the bag identified byigid(x) will be considered as covered Bj.

Thus, we have:

countsingle—tuple(hv D7 C) =
{bagidx(z); x € D A h(x) A bagclass(x) = c}|

We have chosen to implement these modificationRipER, a fast efficient rule
learner designed by Cohen [7] which has been shown to be as accur@sesasn
classical datasets. In addition, the rule sets induceRibper are usually very short,
thus being easily interpretablRipperR includes several functionalities such as pruning
and rule optimization, which also had to be adapted to handle single-tuple hypotheses.
The rule refinement strategy Rirper consists in greedily adding the best literal without
any backtracking. The optimization phases are thus important to improve the accuracy
of the rules induced. The resulting algorithm, which we dalive-RippERMI, inherits
most of RipPER’S qualities, such as the ability to efficiently handle large datasets in nearly
linear time with the number of examples and the number of features.

3.3 Evaluating Na1veE-RipPERMI

In order to compar®&a1ve-RipPERMI to the other multiple-instance learners, we chose
to run experiments on theusk datasets, already presented in sedfioh 2.2. For a detailed

A Framework for Learning Rules from Multiple Instance Data 53

description of these datasets, see [8]. Table 1 presents the resNisvaf-RipPERMI
measured using a tenfold cross-validation on the data.

On themusk1 dataset, the hypotheses generatedNbyve-RipPERMI contain an
average of seven literals. This is primarily due to efficient pre-pruning and post-pruning
techniques implemented Ripper. In addition, the average induction time is less than
sixty seconds on a Sun SparcStation 4 computer. The two algorithms which are here
more accurate thaNA1ve-RIPPERMI onmusk1 generate models which are not directly
interpretable. BotATERATED-DISCRIM-APR and ALL-Pos-APR have been specifically
designed for this learning taski[8]. In contrast, the ILP algorithms sud@mag which
give comprehensible theories are slower than our learner on this specific task.

On themusk2 datasetNarve-RipPERMI obtains an accuracy of 77%, which is far
from the results on theusk1 dataset. In the former, the average number of instances per
bag is much bigger than in the latter. More precisely, during cross-validaionsg-
RIpPERMI generates from thausk2 dataset concise hypotheses achieving low error
rates on the training data, but whose error rates on the test data are significantly higher.
This may be due to the large number instances and attributes, which causes some non
predictive hypotheses to be consistent with the training data. Instance selection algo-
rithms based on prototype selection techniques are currently under investigation by the
authors to overcome this problem. Finally, note that because the musk datasets only
contain numerical attributes, we do not expect our algorithms to compete with fully
numerical methods such as APR learners.

In the following, the relation between consistency on training data and predictive
power will not be addressed. Hence, our goal will not be to improve the accuracy of our
learner on the musk datasets. Instead, we will focus on the abilitgofe-RipPERMI tO
find consistent hypotheses. Considering thatvE-RIPPERMI is a simple MI extension
of an optimized single-instance algorithm, it is likely to be sub-optimal. For example
the greedy search procedure RfrpER may not be adapted to finding consistent Ml
hypotheses on datasets containing many instances. In the following section, the behavior
of our algorithm will be analyzed carefully on artificial datasets, in order to design
improvements.

Table 1. Compared accuracy of Ml learners on bailsk datasets.

Learner Musk1 Musk2 Model
ITERATED-DISCRIM-APR [8]| 0.92 | 0.89 |Axis-parallel Rectangle
CITATION-KNN [16] 0.92 | 0.86 |k-nearest neighbour
Di1VERSE DENSITY [12]] 0.89 | 0.82 |Points inX

RIPPERMI 0.88 | 0.77 |rule set
NAIVE-RIPPERMI 0.88 | 0.77 |rule set

TILDE [4]) 0.87 | 0.79 |horn clauses
ALL-POs-APR [8]] 0.80 | 0.73 |APR

MuLTIINST [[3] 0.77 | 0.84 |APR

54 Y. Chevaleyre and J.-D. Zucker
4 Analysis of RipPERMI Algorithms

The purpose of this section is to analyze and to understand the behavior of the algorithm
presented earlier @éa1ve-RipPERMI. This analysis will enable us to discover potential
drawbacks, which we will try to solve. The following questions will guide our research.
When the number of instances is equal to deyve-RiPPERMI is equivalent tRIPPER;

how, therefore, does the algorithm react when the number of instances increases? Is
the search procedure dfarve-RippERMI adapted to large numbers of instances? When
does the algorithm fail to induce a theory? Considering that a multiple-instance learner
can be viewed as a biased ILP learner [13], how well does an ILP algorithm compare to
ours?

To answer these question, we need datasets on which all is known, in order to run
several experiments. We have therefore decided to design a simple artificial dataset
generator. The following subsection presents the generation of these datasets and their
use.

4.1 Validation Protocol Using Artificial Datasets

In order to test and validate the multiple instance abilitieS@fve-RipPERMI, we con-
structed an artificial dataset generator which builds M| datasets according to parameters
provided by the usBrAs stated above, we were primarily interested in understanding the
behavior of our algorithm as the number of instances per bag increases. For this reason,
we measured the accuracy of our algorithms on several randomly generated datasets
having a given number of instances per bag.

Each artificial dataset contains 200 bags, a given number of instances, and 12 boolean
attributes. The target concept is a boolean conjunction of three literals combining 3 at-
tributes out of 12. The distribution of the values of each attribute is chosen randomly by
the artificial dataset generator. The bags are then built by drawing a given number of in-
stances independently from this distribution, and labeled according to the target concept
chosen by the generator. The decision to use a conjunction of boolean attributes, and a
static number of instances per bag was intended to focus only on the multiple instance
aspect ofNarve-RippERMI, without taking into account its capability of handling nu-
merical attributes or bags of variable size. Note that in the single-instance case this class
of target concepts is PAC-learnable, whereas in the multiple-instances case, it is not. In
the latter case, if viewed in the ILP setting, these conceptsZreondeterminate linked
horn clauseswhich were proven not to be PAC-learnalilel[11]. Thus, the complexity
shift from one to more than one instances is very large.

Narve-RiepErRMI will finally be tested on the mutagenesis dataset containing both
numerical attributes and bags of variable size in the last section.

The different Ml extensions oRippER described in this paper were run on these
datasets with the default parameters, which consist of two optimization passes each
followed by a pruning phase. Hundreds of datasets containing a given nuirdfer
instances per bag were generated; then, the accuracy of each algorithm was measured

2 the source code and further experimentation details can be found on
http://www-poleia.lip6.fr/ chevaley/ART _DAT_GEN/

A Framework for Learning Rules from Multiple Instance Data 55

FOil = 10000 - FOil - E
NaiveRipperMi - NaiveRipperMi
RipperMi ——=a RipperMi

00 [EVUR—
s

@
1<}

o
=}

IS
S
X

100} <

W
S

error rate (%)
induction time (in secs)

N
1S}

[
15

o

. . . . 01
5 10 15 20 25 5 10 15 20 25
number of instances per bag number of instances per bag

Fig. 1. Classification error rate (left figure) and induction time (right figuréjaf., TiLDE, NATVE-
RipPERMI, RIPPERMI (See section4l3), on artificial datasets with various numbers of instances per
bag

by averaging two-fold cross-validations over these datasets. The average classification
error is ploted on figurgl1, as well as the corresponding learning time using a log-scale.
For example, on datasets containing 15 instances pet\»agg-RipPERMI obtains an
average classification error rate of 26.5%, and the induction phase lasts less than a three
seconds on a Sun SparcStation 4 computer.

The ILP learnergor. and TiLpe [4] were also run on these datasets in order to
evaluate the ability of ILP tools on multiple-instance data. The top curve on the left
part of figure 1 shows their accuracy with various numbers of instances per bag. On
this particular task, they are outperformed Wy1ve-RipPERMI in terms of accuracy.
However,TiLDE'S induction time is very low, due to the "learning from interpretation”
framework it implements.

4.2 Pitfalls during Induction

In this sectionNarve-RippERMI Will be analyzed, its pitfalls will be described, and the
next section will propose algorithmic modifications to overcome them.

Let z;(b;) denote thej!” attribute of the instancé;. For the sake of simplicity,
multiple-instance rules! (b) of the form3i, z1(b;) = 0Az2(b;) = 1A...Axj(b;)) =0
will be noted agzl = 0) A (2 = 1) A... A (z; = 0). A careful examination of
the theories induced on the artificial datasets revealed three pitf&llsi@f:-RipPERM1.
To illustrate these pitfalls, let us consider the four bags shown in fable 2. The target
concept is(zl = 1) A (22 = 0) A (23 = 1). NaIvE-RIPPERMI'S Strategy to refine a
rule will be to examine each possible literal, and to add the one which brings the highest
gain. Here, starting with an empty rule, the candidate r(tds= 1), (22 = 0), and
(3 = 1) each cover all four bag$z1 = 0) and(z3 = 0) both cover one positive and
two negative bags, an@d2 = 1) covers two positive and one negative. Thus the best
literal to start with, in terms of information gain, (32 = 1). This literal ismisleading
w.r.t. target concept. Given a target concéfgb) = 3i, f(b;), a literal £ will be said
misleadingff ¢ = —f. We can easily show that with the artificial data sets used here,

56 Y. Chevaleyre and J.-D. Zucker

bag |classz; To T3 bag |classz To T3
bagl|® |1 0 1 bag3|lc |0 0 0
1 1 0 1 1 1
bag2|® |0 1 1 bagd|o |0 0 1
1 0 1 1 0 0

Fig. 2. Two positive bags and two negative bag, with two instances each. Target 1) A (z2 =
0) AN (:Cg = 1)

rules containing misleading literals have the following property: whatever their empirical
error rat8 is, their true error rate is higher than that of the default rule. In addition, when
the number of instances per bag increases, the probability of having misleading literals
correlated with the target concept on the dataset also increases, so does the probability
that the induction algorithm chooses a misleading literal. Note that misleading literals
is a typical multiple-instance phenomenon which cannot appear in the single-instance
case. In the latter case, any rule containing a misleading literal would have an empirical
error rate of 100%. Thus, empty rules would always be preferred to rules with misleading
literals. In the following section, an algorithmic modification will be proposed to cope
with this pitfall. The second pitfall can again be observed on the examples ofiable 2.
From the six candidate rules proposedNyive-RipPERMI three rules cover the four
bags. These three rules are thngistinguishablefor the learner. To avoid this pitfall,

a new coverage measure has been developed. Due to space limitations, this measure
which is based on counting the number of instances per bag covered by a rule will
be described in a forthcoming paper. The last pitfall described in this paper consists in
irrelevant literalsadded to rules. Irrelevant literals are literals which do not belong to the
target concept, but which are not misleading. In single-instance rule learning, irrelevant
literals are generally added at the end of rules because of overfitting. In multiple-instance
learning, irrelevant literals may appear anywhere in a rule because candidate literals are
oftenindistinguishable as explained earlier. Although this phenomenon appears very
often with multiple-instances, it can also appear with single-instance data.

4.3 Avoiding Pitfalls

Algorithmic modifications ofNa1ve-RipPERMI'S search procedure to avoid misleading
and irrelevant literals are now described. Suppose we are refining &rwleich is
known not to contain any misleading literal yet. Liebe the best literal to add t&,
according taNa1ve-RipPERMI’s greedy strategy. Of course, we cannot be suredtisat

not a misleading literal. Yet, it is clear that at least one of the two litetalsd -/ is

not misleading. Hence, by considering bdthu ¢ and R U —¢, at least one of the two
rules will not contain any misleading literal. The induction process thus undoubtedly
avoids this pitfall. Note that the process of examining two rules at each refinement step
can be seen as building a binary decision tree from which a single rule is extracted. In
such a tree, each node corresponds to a literal and paths from the root node to the leaves
corresponds to the candidate rules.

3 the empirical error rate of a rule is generally define% with ¢p and fp being the number
of covered examples which label is (resp. is not) that predicted by the rule

A Framework for Learning Rules from Multiple Instance Data 57

Fig. 3. Decision tree induced from bags in taple 2

Our new refinement procedure builds such a decision tree, starting with a root node.
Let {s;} be the set of leaves of the current tree, andhe rule associated with the path
from the root node to the leaf. Let gain(r, rx), the gain function used bYAIvE-
RipPERMI to evaluate the benefit of replacing the rulley r«. Let¢; be the literal which
maximizes the gaig; = gain(r;,r; U {;) for each ruler;. The leafs; which has the
highest gairy; is chosen for expansion: the leaves corresponding to litéyalad—¢;
are added t@;, which is now an internal node. This refinement process stops when all
gainsg; are null. At last, the rule;; which brings the highest value ghin({},r;) is
extracted from the tree.

Considering the worst case, the storage requirement of this algorithm is linear with
the total number of instances in the training set. In practice, small trees are generated
by this algorithm, as all gaing become null rather quickly. This is due to the fact that
often in multiple-instance learning tasks, large parts of the instance space are of no use
to separate positive bags from negative ones. Note that the complexity of building this
tree is similar to building a single-instance decision tree, whieh(is.a log m) where
m is the number of examples in the single-instance case dnel number of attributes.

In the multiple-instance setting; represents the total number of instances. Assuming as
in [79] that the number of generated rules is approximately constant, the complexity of
RippERMI is thusO(ma log m). Further experiments conducted on the artificial datasets
confirmed that the algorithm’s runtime was approximately linear with the number of
bags. Due to lack of space, these experiments will be detailed elsewhere.

When running this algorithm on the small dataset described in[table 2, it explores the
decision tree as shown in figurk 3. The leaves of the tree indicate how many positive and
negative bags are covered by the corresponding rule. Here, therfute 0) A (z1 =
1) A (3 = 1) covers two positive bag2®) and no negative one. This rule will thus
be extracted from the tree, and the pitfall will be avoided. Much work has been done
recently on the use of decision trees as atemporary representation for single-instance rule
induction. Nevertheless, as stated by Frank and Witten [9], in the single-instance case,
decision trees are used as a substitute to a global optimization on rule sets. Thus they do
not provide a qualitative algorithmic improvement, unlike in the multiple instance case
for which they enable pitfalls to be avoided.

In addition to misleading literals, induced theories may contain irrelevant literals
anywhere in the rules. In the single-instance case, irrelevant literals usually appear at
the end of the rule, because of overfitting. To avoid tRisper implements aeduced

58 Y. Chevaleyre and J.-D. Zucker

error pruning techniquavhich tests and removes literals at the end of rules. We there-
fore added after this pruning step another step consisting in a modified reduced error
pruning algorithm examining literals in the current rule in any order. Using the same
validation procedure as earlier, the graphs of fijlire 1 respectively show the average clas-
sification error rate and induction time BirPERMI, the new algorithm implementing

both improvements. With the dataset containing 15 instances per bag, for example, the
classification error decreases from 26.5% to 18.9%. Note that these algorithmic improve-
ments, aimed at inducing consistant hypotheses, have no impact on the musk learning
task, adNa1ve-RipPERMI was already consistant on these data.

5 Experiments on Relational Data

It has been shown that under various biases, the problem of learning from first-order
data can be converted to a lower-order learning problem, in particular to attribute-value
learning tasks. This process, calleapositionalization has already been investigated
within the multiple-instance framework ifJi17]. In this sectidbarve-RipPERMI and
RrppERM1 Will be used in association witReparT [17] to solve a traditional ILP problem

: the mutagenesis prediction task|[15].

5.1 Solving the Mutagenesis Problem with a Multiple-Instance Learner

The mutagenesis prediction probleml[15] consists in inducing a theory which can be used
to predict whether a molecule is mutagenic or not. To achieve this, a dataset describing
188 molecules with prolog facts is used. Several relational descriptions of the domain
are available. We will use the description termgd[15] where atoms and bonds are
described, ands; which includes; as well as two global molecular properties.

The algorithmREeparT [17] has been used to generate several propositionalizations.
After each propositionalizations, the Ml learner is launched on the reformulated data,
and it outputs an hypothesis and its accuracy on the training set. The process stops if this
accuracy is sufficiently high. If not, another more complex reformulation is chosen, and
so forth. Using the descriptiofi;, REPART first represents molecules as bags of atoms.
Thus, each instance contains the three attributes describing a single atom. As expected,
this reformulation did not yield good results. During the second Repart repre-
sented molecules as bags of pairs of bonded atoms. The following subsection describes
the results using this reformulation. With tBe description level, the first reformulation

Table 2. Compared accuracy of RipperMi with ILP learners on the mutagenesis dataset.

Bo Bs
RirPPERMI 0.82 0.91
NAIVERIPPERMI 0.78 0.91
TILDE 0.77 0.86
ProGgoL 0.76 0.86
FoiL 0.61 0.83

A Framework for Learning Rules from Multiple Instance Data 59

chosen byREpART has shown to be sufficient. This reformulation consisted in repre-
senting each molecule as a bag of atoms each to which was added global molecular
properties.

5.2 Experiments and Results

The results ofNa1ve-RIPPERMI and RipPPERMI are compared to those of state of the

art ILP learners able to generate comprehensible hypotlikeses1 [15], TiLpE [4],
andFoiL. Table[2 shows the accuracy of these learners measured with a tenfold cross-
validation . BothNa1ve-RippERM1 and RippErRMI perform equally well on thés; de-
scription, which is not surprising, because most literals added to the induced theo-
ries are global literals. Therefore, their multiple-instance ability is not challenged here.
On the other hand, the reformulation using e description level does not contain

any global attributes. This explains the higher accuracy obtaineRinmerM1 com-

pared to that ofNarvERPPERMI. The following is an example of rule generated by
ourlearneractive < (typel = 1) A (chl < 0.288) A (ch2 < -0.404) It
indicates that if a molecule has a pair of bonded atoms such that the first one is of type
1 and has a partial charge lower than 0.288 and that the second one has a partial charge
lower than -0.404, then the molecule is mutagenic. Both Ml learners are faster than ILP
algorithms. For example, on th#& description levelNarve-RipPERMI induces an hy-
pothesis less than 150 seconds on a Sun SparcStation 4. In compReis@u, requires
117039 seconddLpE requires 539 seconds, aRdiL requires 4950 seconds.

6 Conclusion

The problem of supervised multiple-instance learning is a recent learning problem which
has raised interest in the machine learning community. This problem is encountered in
contexts where an object may have several alternative vectors to describe its different
possible configurations. Solving multiple-instance problems using propositional algo-
rithms raises subtle issues that are related to the notion of bags of instances whose cov-
erage is by essence different from that of mono-instance problems. We have proposed an
method to extend a propositional rule learning algorithm to the multiple-instance case.
Some drawbacks of this method have been detected and a better search procedure was
developed. Each refinement has been validated on artificial datasets.

With the help of th&ReparT [L7] algorithm, which reformulates first-order examples
into bags of instances, our algorithm has been tested on the well known mutagenesis
relational dataseRipPERMI yielded good results compared to thos&OiL TiLpE and
ProcGoL on this problem. It also showed to be significantly faster. We therefore argue
that the multiple instance paradigm may be very useful for solving a wide range of
relational problems. Relational data mining tasks may also be addressed by multiple-
instance learners, in particular when it is possible to create bags of instances making
sense by joining tables together [6]. Finally, a future application of our learner will be
to embed it in a mobile robot to recognize real-world objects from segmented images.

Many questions remain opened. The pitfalls described here appear more often when
instances are independantly drawn from a distribufiorHow often do they appear if

60

Y. Chevaleyre and J.-D. Zucker

this does not hold any more ? In fact, most theoretical studies were made under this
statistical assumption which was shown to be reasonable in many cases. An interesting
research issue would be to develop weaker assumptions which would be more realistic.

Acknowledgments. We would like to thank the anonymous reviewers for their helpful
suggestions, comments, and pointers to relevant literature.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Erick Alphonse and Celine Rouveirol. Lazy propositionalization for relational learning. In
ECAI, 2000.

. P. Auer, P. Long, and Ashwin Srinivasan. Approximating hyper-rectangles: Learning and

pseudo-random sets. Annual ACM Symposium on Theory of Computit@07.

. Peter Auer. On learning from multi-instance examples: Empirical evaluation of a theoretical

approach. IrProc. 14th International Conference on Machine Learnih§97.

. Hendrik Blockeel, Luc De Raedt, Nico Jacobs, and Bart Demoen. Scaling up inductive logic

programming by learning from interpretation®ata Mining and Knowledge Discovery
3(1):59-93, 1999.

. Avrim Blum and Adam Kalai. A note on learning from multiple-instance examplieehine

Learning 30, 1998.

. Yann Chevaleyre and J.D. Zucker. Noise tolerant rule induction for multiple-instance

data and potential data mining application. Tech. Rep. University of Paris 6, available at
http://www-poleia.lip6.fr/ chevaley/michurning.ps, 2001.

. William W. Cohen. Fast effective rule induction. Pmoc. 12th International Conference on

Machine LearningMorgan Kaufmann, 1995.

. Thomas G. Dietterich, Richard H. Lathrop, and EBsnhozano-Bfez. Solving the multiple-

instance problem with axis-parallel rectangléstificial Intelligence 89(1-2), 1997.

. Eibe Frank and lan H. Witten. Generating accurate rule sets without global optimization. In

Proc. 15th ICML, 1998.

Attilio Giordana, Lorenza Saitta, Michele Sebag, and Marco Botta. Analyzing relational
learning in the phase transition framework.Rroc. 17th ICML, 2000.

J.U. Kietz. Some lower bounds for the computational complexity of inductive logic program-
ming. INECML, 1993.

Oded Maron and Aparna Lakshmi Ratan. Multiple-instance learning for natural scene clas-
sification. InProc. 15th ICML, pages 341-349, 1998.

Luc De Raedt. Attribute-value learning versus inductive logic programming: The missing
links. In Proc. 8th International Conference on I.P998.

Michele Sebag and Celine Rouveirol. Tractable induction and classification in first order
logic. InIJCAI, Nagoya, Japan, 1997.

A. Srinivasan and S. Muggleton. Comparing the use of background knowledge by two ilp
systems. In L. de Raedt, editdlP-95, Katholieke Universiteit Leuven, 1995.

Jun Wang and Jean-Daniel Zucker. Solving multiple-instance problem: a lazy learning ap-
proach. InProc. 17th ICML, 2000.

Jean-Daniel Zucker and Jean-Gabriel Ganascia. Learning structurally indeterminate clauses.
In Proc. 8th International Conference on ILBpringer-Verlag, 1998.

	Introduction
	The Multiple Instance Learning Problem
	Definition and Notation
	Related Work

	Extending a Propositional Learner
	Motivation
	A Single-Tuple Naive Extension of textsc {Ripper}
	Evaluating textsc {Naive-RipperMI}

	Analysis of textsc {RipperMi} Algorithms
	Validation Protocol Using Artificial Datasets
	Pitfalls during Induction
	Avoiding Pitfalls

	Experiments on Relational Data
	Solving the Mutagenesis Problem with a Multiple-Instance Learner
	Experiments and Results

	Conclusion

